Preamble
The book is dedicated to the memory of Jerome Cornfield and was published in the Wiley series in probability and mathematical statistics. In the frontispiece there is a quotation from Lewis Thomas, “From here on, as far ahead as one can see, medicine must be building, as a central part of its scientific base, a solid underpinning of statistical knowledge. Hunches and intuitive impressions are essential for getting the work started, but it is only through the quality of the numbers at the end that the truth can be told.”

Aims
There is a growing need in medical research for the contributions of professionals trained in biostatistics and epidemiology, and there is a nationwide shortage of adequate manpower. The subject was discussed at length in the course of a workshop on epidemiology and biostatistics organized by the National Cancer Institute in 1979. Since there are not enough professionals in these fields to meet the needs of medical schools and cancer centers around the country, the recommendation was made that special seminars and teaching materials be developed to enhance the effectiveness of individuals now filling many of the positions. In response to the general recommendation a summer conference on statistics in cancer research was held at Memorial Sloan-Kettering Cancer Center during the week of June 22-26, 1981. This book is based on the lectures and discussions presented at the conference. The book offers a comprehensive overview of the field of biostatistics. Although the emphasis of the meeting was on cancer research, nearly everything discussed is applicable to other areas of medical investigation. Since there are currently many opportunities in biostatistics, this volume can provide useful information for classically trained statisticians interested in entering the field, and it can help those new to the field to become more effective collaborators. It can serve as stimulus for graduate students in statistics, to nurture their interest and to prepare them for careers in biostatistics. It can also be read with benefit by clinical investigators seeking a better understanding of statistical concepts and related multidisciplinary aspects of medical research (Preface, pages ix and x).

Contents (xxi + 551 pages)
[Sub-sub-headings omitted]
Preface (Valerie Miké, Kenneth E Stanley)
Part I Introduction
 1. The role of statistics in medical research (Frederick Mosteller)
 Importance of variance
 Problem formulation
 Design of investigations
 Nonsampling errors
 Analysis
 Reporting
 Schools of thought
 Tabulation
 To sum up
 References
Part II Epidemiology
2. Cancer epidemiology (Theodore Colton, E Robert Greenberg)
 Introduction
 Descriptive epidemiology
 Ecologic relationships
 Analytic epidemiology
 Cohort studies
 Case-control studies
 Association to causation
 Appendix 1. Questions for assessment of a cohort study
 Appendix 2. Questions for assessment of a case-control study
 Appendix 3. Requirements for establishing causation from analytic observational studies
 References
 Bibliography

3. Trends in cancer mortality and incidence in the United States: is the future clear or clouded? (Marvin A Schneiderman)
 Introduction
 Materials and methods
 Results
 Discussion
 References

Part III Issues in clinical studies

4. Clinical studies in cancer: a historical perspective (Valerie Miké)
 Early history of medicine
 The nineteenth century
 The twentieth century
 The cancer program today
 Accomplishments and future goals
 The impact of statistical methodology
 Major problems
 Conclusion
 References

 Legal aspects of clinical trials
 Psychological aspects of clinical trials
 Ethical aspects of clinical trials
 The physician-patient relationship
 Side effects versus benefits of chemotherapy
 Phase I trials and the terminal patient
 Social classes and clinical research
 Personal savings for experimental treatment
 Federal regulations: legal and ethical?
 Randomized trials and the new federal guidelines
 Concluding remarks
 References
 Nuremberg code
 Declaration of Helsinki

Views of a medical oncologist
The issues as seen by a statistician
Views of a surgical oncologist
A statistician responds
The osteogenic sarcoma controversy
The case for randomisation in clinical trials
Patient acceptance of randomisation
Differences in quality of historical controls
The need for a balanced view
Sequential designs
Concluding remarks
References

Part IV Practical considerations
7. Design and implementation of clinical trials (Martin L Lesser)
 Types of clinical trials and their structure
 Sample size and power determination
 Implementation of clinical trials
 References

8. Data management and quality control (Judith R O’Fallon)
 Introduction
 Data item selection
 Forms design and testing
 Data collection: personnel, materials, procedures
 Data editing procedures
 Monitoring data quality
 Development of reports
 Other procedures associated with data management
 Discussion
 References

9. Statistical software, data base management, statistical packages, and graphics (David
 W Brown Jr)
 Introduction
 Using a computer system
 Statistical packages
 Data base management systems
 FORTRAN program libraries
 Summary
 Bibliography
 Appendix 1. SAS
 Appendix 2. SPSS
 Appendix 3. BMDP
 Appendix 4. Minitab
 Appendix 5. P-STAT
 Appendix 6. OSIRIS IV
 Appendix 7. SIR
 Appendix 8. IMSL
 Appendix 9. NCAR
 Appendix 10. GR-Z

Part V Statistical methodology
 References
 Bibliography
11. Inference in survival analysis: nonparametric tests to compare survival distributions (Stephen W Lagakos)
 Introduction
 Preliminaries
 A family of nonparametric tests
 Derivations of tests from Cox’s regression model
 Properties of tests
 Extensions
 Summary
 References
12. Analysis of survival data: Cox and Weibull models with covariates (David P Byar)
 Introduction
 Screening for prognostic significance
 Survival models incorporating covariates
 Fitting interaction terms
 Conclusions
 References
13. Analysis of categorical data: exact tests and log-linear models (Thomas A Louis)
 Introduction
 The 2×2 table
 Testing and confidence intervals (asymptotic methods)
 Simpson’s paradox
 A problem with log-linear models
 Residuals and parsimonious models
 Model selection
 Random effects models
 Bradley-Terry model
 Additional topics
 Appendix. Fitting models
 References
14. Analysis of categorical data: logistic models (David A Schoenfeld)
 Introduction
 Exact test for treatment or covariate effects
 Asymptotic tests for treatment effect
 Interpreting the model
 Coding variables
 Variable selection techniques
 Testing goodness of fit
 Ordinal response data
 References
15. Monitoring and stopping clinical trials (Mitchell H Gail)
 Introduction
 Monitoring data on pairwise treatment differences
 Criticisms and comparisons of proposed boundaries
 Monitoring time to response data
 Discussion
Part VI Communication

16. Interacting with the medical community: consulting, collaboration, teaching - panel discussion (Theodore Colton, Edmund A Gehan, Lawrence E Hinkle Jr, Carl M Pinsky, Kenneth E Stanley)
 - Role of the biostatistician
 - Working as equals
 - Aspects of consulting
 - Professional interchange
 - Responsibility and collaboration
 - Who should pay?
 - Authorship
 - Evaluating the role of others
 - Physicians’ view of a good statistician
 - The need for specialized assistance
 - Physical proximity: pros and cons
 - Meeting deadlines
 - Facing tradition
 - Educating physicians
 - Educating statisticians
 - A difference in perspective
 - The Institutional Review Board

References

17. Interpretation and presentation of statistical results – panel discussion (Kenneth E Stanley, David P Byar, Mitchell H Gail, Richard D Gelber, Paul P Rosen)
 - Conflicting goals
 - The pathologists’ perspective
 - Preparing the written report
 - The statistician as skeptic
 - Factors affecting quality
 - Reporting details of study design
 - Comparability of data sets
 - Other issues: sample size and exclusion of ineligible cases
 - Reporting power; protocol violation and missing data
 - Patient refusal and selection bias
 - Reporting results
 - Describing analytic models
 - Retrospective analyses
 - Potential bias in post hoc comparisons
 - Time-dependent covariate analysis
 - Concluding remarks
 - Standardized reporting scheme for clinical trials
 - Publishing results of exploratory data analysis

References

Index

Authors

The editors are Valerie Miké PhD (Head, Biostatistics Laboratory, Memorial Sloan-Kettering Cancer Center and Professor and Chairman of the Biostatistics Unit, Cornell University Graduate School of Medical Sciences, and Professor of Biostatistics in Public Health, Cornell
University Medical College, New York, NY) and Kenneth E Stanley PhD (Assistant Professor of Biostatistics, Harvard University School of Public Health and the Sidney Farber Cancer Institute, Boston, MA). The contributors are George J Annas JD MPH (Department of Social Medical Sciences and Community Medicine, Boston University School of Public Health, Boston, MA); John C Bailar III, MD, PhD (US Environmental Protection Agency, Washington DC and Department of Biostatistics, Harvard University School of Public Health, Boston, MA); David W Braun Jr, PhD (Biostatistics Laboratory, Memorial Sloan-Kettering Cancer Center and Cornell University, New York, NY); Byron W Brown Jr, PhD (Division of Biostatistics, Stanford University School of Medicine, Stanford, CA); David P Byar MD (Biometry Branch, National Cancer Institute, Bethesda MD); Eric J Cassell MD (Department of Public Health, Cornell University Medical College, New York, NY); Theodore Colton ScD (Epidemiology and Biostatistics Section, Boston University School of Public Health and Hubert H Humphrey Cancer Center, Boston, MA); Jerome J DeCosse MD, PhD (Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY); Mitchell H Gail MD, PhD (Biometry Branch, National Cancer Institute, Bethesda, MD); Edmund A Gehan PhD (Department of Biomathematics, University of Texas System Cancer Center, Houston, Texas); Richard D Gelber PhD (Department of Biostatistics, Harvard University School of Public Health and Sidney Farber Cancer Institute, Boston, MA); E Robert Greenberg MD (Department of Community and Family Medicine, Dartmouth Medical School, Hanover, New Hampshire); Lawrence E Hinkle Jr MD (Department of Medicine, Cornell University Medical College, New York, NY); James F Holland MD (Department of Neoplastic Diseases, Mount Sinai School of Medicine, New York, NY); Jimmie CB Holland MD (Psychiatry Service, Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY); Stephen W Lagakos PhD (Department of Biostatistics, Harvard University School of Public Health and Sidney Farber Cancer Institute, Boston, MA); Martin L Lesser PhD (Biostatistics Laboratory, Memorial Sloan-Kettering Cancer Center and Cornell University, New York, NY); Robert J Levine MD (Department of Internal Medicine, Yale University, School of Medicine, New Haven, Connecticut); Thomas A Louis PhD (Department of Biostatistics, Harvard University School of Public Health, Boston, MA); Frederick Mosteller PhD (Department of Health Policy and Management, Harvard University School of Public Health, Boston, MA); Judith R O’Fallon PhD (Cancer Center Statistics, Mayo Comprehensive Cancer Center, Rochester, Minnesota); Carl M Pinsky MD (Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY); Paul P Rosen MD (Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY); Marvin A Schneiderman PhD (Clement Associates, Arlington, VA); and, David A Schoenfeld PhD (Department of Biostatistics, Harvard University School of Public Health, and Sidney Farber Cancer Institute, Boston, MA)